Abstract

Abstract Among the most prevalent and detrimental bacteria causing urinary tract infections (UTIs) is Klebsiella (K.) pneumoniae. A rapid determination of its antibiotic susceptibility can enhance patient treatment and mitigate the spread of resistant strains. In this study, we assessed the viability of using infrared spectroscopy-based machine learning as a rapid and precise approach for detecting K.

pneumoniae bacteria and determining its susceptibility to various antibiotics directly from a patient's urine sample. In this study, 2333 bacterial samples, including 636 K.

pneumoniae were investigated using infrared micro-spectroscopy. The obtained spectra (27996spectra) were analyzed with XGBoost classifier, achieving a success rate exceeding 95 % for identifying K. pneumoniae.

Moreover, this method allows for the simultaneous determination of K. pneumoniae susceptibility to various antibiotics with sensitivities ranging between 74 % and 81 % within approximately 40 min after receiving the patient's urine sample.

Read the full article