Chabauty limits of groups of involutions In SL(2,F) for local fields

Authors From Afeka: Arielle Leitner


We classify Chabauty limits of groups fixed by various (abstract) involutions over SL(2,F), where F is a finite field-extension of Qp, with p≠2. To do so, we first classify abstract involutions over SL(2,F) with F a quadratic extension of Qp, and prove p-adic polar decompositions with respect to various subgroups of p-adic SL2. Then we classify Chabauty limits of: SL(2,F)⊂SL(2,E) where E is a quadratic extension of F, of SL(2,R)⊂SL(2,C), and of Hθ⊂SL(2,F), where Hθ is the fixed point group of an F-involution θ over SL(2,F).

Communications in Algebra

Read the full article

1-800-37-37-10 Dial
Ficus Building

38 Mivtza kadesh St. |Tel Aviv

Hakirya Building

218 Bnei Efraim St. | Tel Aviv



Train Station

  • 7 min
  • 25 min
  • 7 min
  • 11 min

Yarkon Park

  • 6 min
  • 20 min
  • 6 min
  • 17 min

Ayalon Mall

  • 9 min
  • 29 min
  • 9 min
  • 16 min

The Beach

  • 16 min
  • 16 min
  • 35 min